KI-Sicherheit: Hochsichere KI-Datenverarbeitung dank Sealed-Cloud-Technologie
Der folgende Text basiert auf dem Vortrag „KI-Sicherheit: Souveräne Cloud-Lösungen und sichere Datenverarbeitung“ von idgard-CTO Dr. Sebastian Eder auf der it-sa 2024 am 22.10.2024.
Über den Einsatz von Künstlicher Intelligenz (KI) im unternehmerischen Umfeld und KI-Sicherheit haben wir in diesem Blog bereits mehrfach geschrieben. Kein Wunder: Die Integration von KI und insbesondere von Large Language Models (LLMs) bietet Unternehmen in vielen Bereichen enorme Potenziale. Mögliche Anwendungsfelder sind Markt- und Datenanalysen, interne Dokumentationen oder die Unterstützung des Aufsichtsrats bei der Entscheidungsfindung, um nur einige Beispiele zu nennen.
Doch der Einsatz von KI-Anwendungen in Unternehmen ist auch mit erheblichen Herausforderungen verbunden. Dies gilt besonders dann, wenn sensible Informationen wie Finanz- und Projektdaten oder personenbezogene Daten verarbeitet werden. Denn klassische LLMs sind oft anfällig für Manipulationen und Datenlecks. Eine Möglichkeit, diesen Risiken zu begegnen, ist der Betrieb in einer hochsicheren, souveränen und versiegelten Cloud.
Was sind LLMs? Herausforderungen und Risiken
Large Language Models (LLMs) sind leistungsstarke KI-Modelle, die mit riesigen Datenmengen (die Rede ist von mehreren Terabytes an Textdaten) trainiert werden und in der Lage sind, natürliche Sprache zu analysieren, zu verarbeiten und zu generieren. Sie finden Anwendung in Chatbots wie ChatGPT, aber auch in Bereichen wie der automatischen Übersetzung, der Textgenerierung, dem Kundensupport oder der Analyse großer Datenmengen. Zu den bekanntesten LLMs gehören die GPT-Modelle von OpenAI, Mistral von Mistral AI und LLaMA von Meta.
Trotz ihrer Leistungsfähigkeit bergen LLMs erhebliche Risiken – vor allem dann, wenn es um die Verarbeitung sensibler Informationen geht:
- Unbefugte Zugriffe auf Modelle oder Trainingsdaten: Angreifer könnten direkt auf die Trainingsdaten oder das Modell zugreifen und sensible Informationen einsehen oder entwenden.
- Informationsabflüsse während der Nutzung des Modells: Auch wenn die Eindringlinge keinen direkten Zugriff auf die Modell- oder Trainingsdaten haben, besteht das Risiko, dass sich durch Anfragen an das Modell Rückschlüsse auf sensible Informationen ziehen lassen.
- Modellmanipulationen: Angreifer könnten versuchen, entweder die Trainingsdaten oder das KI-Modell direkt zu manipulieren, um bestimmte Ergebnisse zu verfälschen oder anderweitig zu beeinflussen.
- Operative Komplexität: Die Bereitstellung und Wartung einer KI-Cloud erfordert ein hohes Maß an technischer Expertise, da die Hardware schnell veraltet und ständig zu aktualisieren ist.
Angesichts dieser Herausforderungen stoßen traditionelle Hosting-Ansätze schnell an ihre Grenzen, wenn es um den sicheren Betrieb von KI-Anwendungen geht. Darüber hinaus wird der Einsatz von LLMs vor allem in stark regulierten Bereichen wie dem Finanz-, Rechts- und Gesundheitssektor durch strenge Compliance-Vorgaben erschwert.
Abhilfe schafft, wie schon eingangs erwähnt, der geschützte Betrieb des KI-Modells in einer hochsicheren, souveränen Cloud. Doch was genau heißt das?
Die Lösung: Eine souveräne Cloud
Der Begriff „souveräne Cloud“ ist bislang nicht einheitlich definiert. Gemeint ist in diesem Fall ein Cloud-Dienst, der strengsten Sicherheitsanforderungen genügt und zuverlässig vor jeglichen unbefugten Zugriffen geschützt ist, sei es durch externe Angreifer, staatliche Akteure (z. B. Behörden, die durch Gesetze wie den US CLOUD Act Zugang zu den Daten erhalten) oder interne Risikofaktoren (etwa Mitarbeiter des Dienstbetreibers oder Administratoren mit weitreichenden Zugriffsrechten).
Darüber hinaus ist es entscheidend, dass die Datensouveränität (die vollständige Kontrolle des Nutzers über seine Daten) und Datenintegrität (die Korrektheit, Vollständigkeit und Unversehrtheit der Daten) jederzeit sichergestellt sind.
Souveränität dank Sealed-Cloud-Technologie
Der Datenraum- und Collaboration-Dienst idgard erfüllt diese hohen Anforderungen durch sein dreistufiges Sicherheitskonzept, das den Betrieb in hochsicheren deutschen Rechenzentren, eine unabhängige Zertifizierung nach dem TCDP (Trusted-Cloud-Datenschutz-Profil) und die patentierte Sealed-Cloud-Technologie umfasst. Diese proprietäre Server-Technologie geht weit über die üblichen Sicherheitsmaßnahmen wie Ende-zu-Ende-Verschlüsselung hinaus: Die „versiegelte“ Cloud verhindert durch einen Confidential-Computing-Ansatz nicht nur externe, sondern auch interne Zugriffe nachweislich – selbst diejenigen von Administratoren oder idgard-Mitarbeitern.
Höchste Sicherheit auch bei der Datenverarbeitung
Was eine souveräne Cloud wie idgard besonders auszeichnet, ist der umfassende Schutz der Daten in allen Phasen der Verarbeitung – ob während der Übertragung („Data in Transit“), der Speicherung („Data at Rest“) oder der Verarbeitung („Data in Use“). Letzteres ist von entscheidender Bedeutung, da Daten während ihrer Verarbeitung im Klartext, also unverschlüsselt, auf den Servern vorliegen müssen und daher besonders gefährdet sind.
Der hohe Sicherheitsstandard der Sealed-Cloud-Technologie ermöglicht es nicht nur, sensible Daten während der digitalen Zusammenarbeit in idgard zu schützen, sondern auch Tools wie Virenscanner und PDF-Viewer oder eben komplexe Anwendungen wie LLMs sicher in der Cloud zu betreiben. Auf diese Weise ist es beispielsweise möglich, die sensiblen Daten der idgard-Kunden durch eine KI analysieren zu lassen und den Kunden die Ergebnisse zurückzuspielen, ohne dass Dritte auf die Daten oder die Analyseergebnisse zugreifen können. So ist die Integrität der Daten jederzeit gewährleistet und die Kontrolle über die Informationen bleibt stets beim Kunden.
Praxisbeispiel: Integration von KI in idgard
Die sichere Nutzung von KI-Anwendungen in einer souveränen Cloud wie idgard erfordert zunächst die Bereitstellung der nötigen Hardware. Dies geschieht durch den Aufbau eines dedizierten KI-Clusters in der sicheren Umgebung der Sealed Cloud. Bei einem solchen Cluster handelt es sich um ein Netzwerk von PCs, die speziell dafür ausgelegt sind, große Datenmengen zu analysieren und Berechnungen durchzuführen, die bei KI-Anwendungen nötig sind. Sind die hardwareseitigen Voraussetzungen erfüllt, folgt die Integration frei verfügbarer Open Source LLMs (Large Language Models) wie LLaMA oder Mistral. Diese gilt es anschließend innerhalb der versiegelten Cloud zu trainieren und durch Feintuning an die spezifischen Bedürfnisse der idgard-Kunden anzupassen.
Der gesamte Prozess von der Verwaltung der Trainingsdaten über das eigentliche Training bis hin zur Nutzung des Modells ist zu jedem Zeitpunkt durch die Sealed-Cloud-Technologie abgesichert. Dies schützt nicht nur die Trainingsdaten und Modelle vor unbefugten Zugriffen, Manipulationen oder Datenabflüssen, sondern auch die Prompts – also die Eingaben an das KI-Modell – sowie die generierten Ergebnisse.
Typische Anwendungsfälle innerhalb eines Collaboration-Dienstes wie idgard umfassen unter anderem die „Kommunikation“ mit Dokumenten, eine intelligente Volltextsuche oder die Zusammenfassung von Informationen. Darüber hinaus sind auch komplexere Anwendungen denkbar, wie z. B. Markt- und Datenanalysen oder Assistenzfunktionen für die digitale Gremien- oder Aufsichtsratskommunikation.
Fazit: KI-Sicherheit in der Cloud dank Versiegelung
Durch den Betrieb von KI-Systemen in souveränen Cloud-Diensten wie idgard lassen sich die Angriffsflächen beim Umgang mit KI signifikant reduzieren. Unbefugte Zugriffe auf Modelle, Trainingsdaten und Anfragen werden zuverlässig verhindert und das Risiko von Modellmanipulationen deutlich reduziert. Die einzigartige Sicherheitsarchitektur der Sealed-Cloud-Technologie ermöglicht den Betrieb und die Weiterentwicklung von LLMs und anderen KI-Anwendungen, ohne Kompromisse bei der Sicherheit oder der Betriebskomplexität eingehen zu müssen.
Dies bietet nicht nur eine solide Grundlage für bestehende KI-Lösungen, sondern öffnet auch die Tür für neue Innovationen – vor allem in stark regulierten Branchen wie dem Finanz-, Rechts- und Gesundheitssektor, die besonders hohe Anforderungen an Datenschutz und Datensicherheit stellen.
Titelbild: Shutterstock / Gorodenkoff